High-dimensional joint estimation of multiple directed Gaussian graphical models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-dimensional Covariance Estimation Based On Gaussian Graphical Models

Undirected graphs are often used to describe high dimensional distributions. Under sparsity conditions, the graph can be estimated using l1-penalization methods. We propose and study the following method. We combine a multiple regression approach with ideas of thresholding and refitting: first we infer a sparse undirected graphical model structure via thresholding of each among many l1-norm pen...

متن کامل

Joint estimation of multiple graphical models.

Gaussian graphical models explore dependence relationships between random variables, through the estimation of the corresponding inverse covariance matrices. In this paper we develop an estimator for such models appropriate for data from several graphical models that share the same variables and some of the dependence structure. In this setting, estimating a single graphical model would mask th...

متن کامل

Joint Structural Estimation of Multiple Graphical Models

Gaussian graphical models capture dependence relationships between random variables through the pattern of nonzero elements in the corresponding inverse covariance matrices. To date, there has been a large body of literature on both computational methods and analytical results on the estimation of a single graphical model. However, in many application domains, one has to estimate several relate...

متن کامل

High Dimensional Semiparametric Gaussian Copula Graphical Models

In this paper, we propose a semiparametric approach, named nonparanormal skeptic, for efficiently and robustly estimating high dimensional undirected graphical models. To achieve modeling flexibility, we consider Gaussian Copula graphical models (or the nonparanormal) as proposed by Liu et al. (2009). To achieve estimation robustness, we exploit nonparametric rank-based correlation coefficient ...

متن کامل

Joint Estimation of Multiple Graphical Models from High Dimensional Time Series.

In this manuscript we consider the problem of jointly estimating multiple graphical models in high dimensions. We assume that the data are collected from n subjects, each of which consists of T possibly dependent observations. The graphical models of subjects vary, but are assumed to change smoothly corresponding to a measure of closeness between subjects. We propose a kernel based method for j...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2020

ISSN: 1935-7524

DOI: 10.1214/20-ejs1724